The MARISE Project

→ Project title: <u>Materials for Avalanche Receiver for ult</u>Imate <u>SE</u>nsitivity

FP7-ICT-2007-call n0.2-224142, 3-year project, starting May 1st, 2008

- → Cost: 3 235 k€ Funding: 2 100 k€
- → Manpower: 206 person x months
- → 40 Deliverables
- → http://www.ict-marise.eu

→ Contacts: III-V Lab: Mohand Achouche: mohand.achouche@3-5lab.fr USFD: Jo Shien Ng: j.s.ng@sheffield.ac.uk ADV: Lip Sun How: lipsunhow@adveotec.com IMEC: Peter Ossieur: peter.ossieur@intec.UGent.be IDQ: Alexis Rochas: alexis.rochas@idquantique.com

MARISE Objectives

→ Objectives:

- Innovative APDs using two large bandgap III-V materials of interest: AIGaAs and AllnAs
- Use recent breakthroughs in the impact ionisation characteristics in final APD devices
- Exploit low noise properties of very thin avalanche layers to achieve high sensitivity
- Several applications will be investigated: 10G access, core network avalanche receivers at 40G using waveguide structures and single photon operation for sensing

MARISE progress beyond state of the art

→ Three major objectives:

- Improved material: 1.3-1.55 μm AllnAs APD with GxB=160 GHz and Id<10nA at M=10</p>
- New structure: 1.55 μm AllnAs waveguide APD with GxB=200 GHz and f_{3dB}>30 GHz
- New material: 1.3 μm AlGaAs/InGaAsN APD with targeted GxB>200 GHz

→ Towards lower dark current and higher gain-bandwidth product

MARISE Impact

→ Three expected impacts:

- Improved sensitivity at 40 Gb/s (Competitive market):
 - Simplified architecture
 - Longer span

→ Lower cost

- Broadband access networks at 10 Gb/s (Large volume market):
 - Avoid using optical amplifiers (truly passive optical networks)
 - Increase of the physical reach
 - Burst mode operation ...

→ Larger splitting factor

- Sensing (Emerging market):
 - Low intensity sensing and cryptography
 - Improved dark count rate (Noise)

MARISE Consortium

→ Partners covering all major fields:

- Concepts and materials: University of Sheffield
- Design and processing: Alcatel Thales III-V Lab
- Characterisations and assessment: AdvEOtec
- Applications: IMEC/INTEC, Id Quantique

ALCATEL-THALES

MARISE Work-Packages (1)

→ WP1: Concepts & Materials

- AllnAs/GalnAs:
 - Control of critical charge doping layer and optimisation of thin graded regions
- AlGaAs/GaInAsN:
 - $AI_xGa_{1-x}As$ composition for large ionisation and GaInAsN for 1.3 µm detection

→ WP2: Design & Processing

- Test structures:
 - Mesa type for Avalanche effectiveness assessment
- Planar junction APDs (10G & SPAD):
 - High performance, low leakage current back-side illuminated APDs
- Waveguide-illuminated APDs (40G):
 - High bandwidth and gain-bandwidth structures with efficient passivation of active stripe
 P-contact

MARISE Work-Packages (2)

→ WP3: Characterisations & Assessment

- Provide sound data base for comparison and optimisation of APD structures
- Reliability assessment (long term ageing):
 - Assessment of device stability (passivation layers, charge doping profile,...)

→ WP4: Applications

- 10Gb/s burst mode receivers for next generation PONs:
 - large dynamic range and improved sensitivity (larger splitting factor)
- 40Gb/s APD photoreceivers for metro/access networks
 - Very high gain-bandwidth product (>200 GHz) and improved sensitivity
- Single photon photoreceivers for cryptography and OTDR
 - Very low dark current, no carrier trapping and minimum excess noise

MARISE Work-Plan

